November 2022 NMR Topic of the Month: The BIRD is the word.

For what does the acronym BIRD stand?
BIRD = Bllinear Rotation Decoupling.

What is the role of the BIRD sequence?

The BIRD sequence is a filter, it removes uncoupled magnetization during the Δ period through T_{1} relaxation.
How does the BIRD work?
Product-operators can help explain, but the solution at ρ_{7} does a poor job. Instead, a better explanation is found at ρ_{5}. As usual, $c_{X}=\frac{1}{4}\left(\gamma_{X} B_{0} / k_{B} T\right)$:
$\rho_{0}=c_{I} I_{z}+c_{S} S_{z} \rightarrow \rho_{1}=c_{I} I_{z}-c_{S} S_{y} \rightarrow$
$\rho_{2}=c_{I} I_{z}-c_{S} S_{y} \cos \left(\omega_{s} \tau\right) \cos (\pi J \tau)+c_{S} S_{x} \sin \left(\omega_{S} \tau\right) \cos (\pi J \tau)+c_{S} 2 I_{z} S_{x} \cos \left(\omega_{S} \tau\right) \sin (\pi J \tau)+c_{s} 2 I_{z} S_{y} \sin \left(\omega_{s} \tau\right) \sin (\pi / \tau) \rightarrow$
$\rho_{3}=-c_{I} I_{z}+c_{S} S_{y} \cos \left(\omega_{S} \tau\right) \cos (\pi J \tau)+c_{S} S_{x} \sin \left(\omega_{S} \tau\right) \cos (\pi J \tau)-c_{S} 2 I_{z} S_{x} \cos \left(\omega_{S} \tau\right) \sin (\pi J \tau)+c_{S} 2 I_{z} S_{y} \sin \left(\omega_{S} \tau\right) \sin (\pi J \tau) \rightarrow$
$\rho_{4}=-c_{I} I_{z}+c_{S} S_{y} \cos \left(\omega_{S} \tau\right) \cos (\pi J \tau)+c_{S} S_{x} \sin \left(\omega_{S} \tau\right) \cos (\pi J \tau)-c_{S} 2 I_{z} S_{x} \cos \left(\omega_{S} \tau\right) \sin (\pi J \tau)+c_{S} 2 I_{z} S_{y} \sin \left(\omega_{S} \tau\right) \sin (\pi J \tau) \rightarrow$
$\rho_{5}=-c_{I} I_{z}-c_{S} S_{z} \cos (2 \pi J \tau)-c_{S} 2 I_{z} S_{x} \sin (2 \pi J \tau) m \rho_{6}=-c_{I} I_{z}-c_{S} S_{z} \cos (2 \pi J \tau) \rightarrow \rho_{7}=-c_{I} I_{z}+c_{S} S_{y} \cos (2 \pi J \tau)$
Consider two cases at $\rho_{5}: J=0$ and $J \neq 0$ but $\tau=\frac{1}{|2 J|}$. For the uncoupled case $(J=0), \rho_{5}=-c_{I} I_{z}-c_{S} S_{z}$ so the S-spin magnetization is along $-\hat{z}$ and will diminish under the spin-lattice relaxation during Δ. In the latter case, $\rho_{5}=-c_{I} I_{z}+c_{S} S_{z}$ so the S-spin magnetization is along $+\hat{z}$ and will happily sit there until the final pulse. During Δ the anti-phase term will also diffuse and be lost, this is often further ensured by the application of a gradient pulse. In the version of the BIRD shown above the Δ time is varied to find the minimum in the uncoupled signal. If you don't wait long enough the uncoupled signal survives the Δ period, but the magnetization that has relaxed back to $+\hat{z}$ during Δ also will be detected - so there's a trade-off. Keep in mind that a ${ }^{1} \mathrm{H}-{ }^{-13} \mathrm{C}{ }^{1} \mathrm{~J} \approx 140 \mathrm{~Hz}$ so $\tau \approx 3.6 \mathrm{~ms}$, but Δ may be many seconds.

References

1. J.R. Garbow, D.P. Weitekamp, A. Pines, Chem. Phys. Lett. 93(5), 504-508 (1982).
2. D. Uhrin, T. Liptaj, K.E. Kövér, J. Magn. Reson. Ser. A 101(1), 41-46 (1993).
3. R.T. Williamson, J.R. Carney, W.H. Gerwick, J. Nat. Prod. 63(6), 876-878 (2000).
4. S. Berger and S. Braun, 200 and More NMR Experiments. A Practical Course, Wiley-VCH, Weinheim (2004).
